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markets, or “Carbon Trading Pilot Programs”. This paper employs event study analysis 
to compare the carbon emission reduction impacts of these two approaches. Our findings 
reveal that the Low-Carbon Pilot Provinces/Cities achieved emissions reduction primarily 
by curbing economic output, without significantly reducing carbon emissions intensity. In 
contrast, the Carbon Trading Pilot Programs led to an increase in total carbon emissions by 
driving economic growth, even as they reduced carbon emissions intensity. A heterogeneity 
analysis further indicates that the emissions reductions observed in the Low-Carbon 
Pilot Provinces/Cities were predominantly concentrated in economically less-developed 
regions, whereas the increase in carbon emissions associated with the Carbon Trading Pilot 
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1. Introduction
The comparison of policy effects between mandate-based measures and market-based mechanisms 

has long been a central question in economics (Lange, 1942; Hayek, 1945; Arrow, 1951; Debreu, 1951; 
Weitzman, 1974; Acemoglu and Verdier, 2000; Acemoglu et al., 2008). In theory, perfectly functioning 
market-based mechanisms can enable socioeconomic systems to achieve an optimal state even without 
external government intervention. However, numerous frictions overlooked by theoretical models exist 
in practice.

In developing countries, for instance, command executors and market regulators often lack 
the capacity to effectively detect violations, and their regulatory and enforcement capabilities face 
significant limitations (Eskeland and Jimenez, 1992; Russell and Vaughan, 2003). As a result, the ideal 
outcomes envisioned by theoretically optimal policy designs may not be fully realized under real-
world constraints, leading instead to suboptimal results. In the context of environmental and climate 
governance, empirical evidence from many developing countries suggests that mandate-based policies 
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and market-based mechanisms often fail to produce the outcomes predicted by economic theories, 
complicating direct comparisons of their advantages and disadvantages (Blackman et al., 2018). This 
underscores the need for rigorous empirical analysis to evaluate the real-world effects and underlying 
mechanisms of climate policies. The existing research literature provides extensive theoretical insights 
into the carbon emissions-reducing impacts of mandate-based and market-based policies (Karp and 
Traeger, 2018; Mideksa and Weitzman, 2019). However, empirical studies directly comparing the 
effects of these two approaches remain scarce (He et al., 2022). This paper aims to address this gap by 
evaluating the effectiveness and mechanisms of administrative measures and market mechanisms in 
controlling greenhouse gas (GHG) emissions, using China’s climate policies as a case study.

According to China’s White Paper Climate Change Response Policies and Actions, we systematically 
identified the country’s key pilot policies for climate change mitigation, focusing on two of the most 
significant initiatives: the pilot programs for low-carbon provinces and cities (“Low-Carbon Pilot 
Provinces/Cities”) and the pilot programs for carbon emissions trading markets (“Carbon Trading Pilot 
Programs”). The Low-Carbon Pilot Provinces/Cities embody administrative measures, whereas the 
Carbon Trading Pilot Programs represent market mechanisms. Comparing the carbon emissions-reducing 
effects of these two types of pilot programs is crucial for understanding their impacts and informing 
future policy design. Using the event analysis method, we conducted a comprehensive and systematic 
evaluation of the effectiveness of these two approaches, shedding light on their respective contributions 
to climate change mitigation.

Our findings indicate that the Low-Carbon Pilot Provinces/Cities significantly reduced total carbon 
emissions, primarily by curbing economic output. In contrast, the Carbon Trading Pilot Programs led to 
a slight increase in total carbon emissions, as the growth in economic output offset reductions in carbon 
emissions intensity within the pilot counties and districts. This paper explores the underlying reasons for 
these outcomes. The Low-Carbon Pilot Provinces/Cities achieved reductions in total carbon emissions 
largely because local governments, under central government supervision and the competitive pressures 
among peer governments, adopted and often exceeded ambitious emissions reduction targets. On the 
other hand, the Carbon Trading Pilot Programs utilized a tradable performance standard (TPS) as the 
mechanism for carbon quota distribution. This approach focused on reducing carbon emissions intensity 
rather than total carbon emissions, which explains why these programs did not result in an absolute 
decline in emissions. 

The TPS mechanism encouraged energy-intensive enterprises to adopt low-carbon technologies 
or purchase additional carbon quotas, thereby reducing overall carbon emissions intensity. However, 
the same rules incentivized cleaner enterprises to scale up production, which, in turn, could offset the 
emissions reductions achieved elsewhere. As a result, total carbon emissions within these regions did not 
necessarily decrease. In the long run, reducing carbon emissions through mandate-based measures by 
curbing output is inconsistent with the fundamental principles of sustainable development. Conversely, 
market-based mechanisms can drive reductions in carbon emissions intensity by stimulating both the 
market and economic growth. In this context, the effectiveness of the two approaches in mitigating 
climate change does not lie in their absolute advantages or disadvantages but in their alignment with 
policy goals. The key question is whether the policy aims to achieve short-term reductions in total 
carbon emissions or to tolerate a moderate increase in emissions while fostering economic growth and a 
clean energy transition. Notably, the design of a carbon market adopting a cap-and-trade (CAT) system 
could alter corporate incentives, potentially leading to conclusions that differ from those based on the 
effects observed in existing TPS carbon markets.

Furthermore, we have identified heterogeneous carbon emission reduction effects of climate policies 
across different regions. As a mandate-based climate policy, the emissions abatement effect of the 
Low-Carbon Pilot Provinces/Cities is not influenced by the initial carbon emissions levels of the pilot 
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regions. However, the initial economic conditions at the county and district levels significantly impact 
the emissions abatement outcomes of these pilot programs at the provincial level. Specifically, regions 
with lower GDP exhibit greater emissions abatement effects compared to regions with higher GDP. This 
may be attributed to the lower opportunity costs for economically less-developed regions in reducing 
carbon emissions. On the other hand, as a market-based policy, the Carbon Trading Pilot Programs show 
an emissions-increasing effect, primarily in regions with lower initial carbon emissions intensity. This 
occurs because enterprises in these counties and districts often employ cleaner production practices and 
are more incentivized by the carbon market to expand production. As a result, the economies of scale 
effect offsets the technology effect, ultimately leading to an increase in carbon emissions.

The contributions of this paper are threefold: 
First, it conducts a comprehensive and systematic ex-post evaluation of the carbon emission 

reduction effects of China’s climate policies, spanning a long time frame (2008-2017) and offering 
fine-grained analysis at the county and district levels. In the existing literature on climate policies, 
the prevalent approach involves utilizing integrated evaluation models for ex-ante simulations of 
policy impacts, which often serve as a basis for policymaking. Most ex-ante research on China’s 
climate policies has focused on the carbon trading market, concluding that carbon markets can achieve 
emissions reduction targets at relatively low costs (Wang et al., 2015; Li et al., 2018; Jin et al., 2020). 
However, assumptions underlying ex-ante models often deviate from real-world conditions, leading 
to discrepancies between forecasted results and those derived from ex-post analyses. As a result, ex-
ante evaluations are often inadequate for accurately assessing the actual emissions reduction effects 
of climate policies (Qiu et al., 2020). Some studies have employed an ex-post analytical approach to 
evaluate the emissions-reduction effects of climate policies at the corporate or provincial level (Chen and 
Xu, 2018; Cui et al., 2021; Cao et al., 2021). However, the availability of high-quality and representative 
enterprise-level data nationwide remains limited, and challenges in conducting carbon market research at 
the corporate level persist. As a result, the regional impact of emissions abatement policies merits greater 
attention. Given the scarcity of detailed research at the provincial and prefectural city levels, our study 
addresses this gap by focusing on the county or district level, thereby contributing new insights to the 
existing body of literature.

Second, this paper contributes to the understanding of mandate-based and market-based 
environmental management policies in the context of climate change. Our findings reveal that under 
specific market system designs, significant differences exist in the emissions reduction effects and 
mechanisms of these two policy types. Mandate-based policies, while effective at reducing total carbon 
emissions by curbing overall economic output, showed minimal improvement in emissions intensity 
within the pilot counties and districts. In contrast, market-based policies significantly reduced emissions 
intensity and stimulated economic growth, though they led to a slight increase in total carbon emissions. 
Our conclusions regarding mandate-based policies align with real-world observations. For example, 
local governments often restrict power supply and industrial production to meet energy consumption 
and intensity targets set by higher-level authorities. Similarly, the potential emissions-increasing effects 
of market-based policies align with theoretical expectations and are consistent with the forecasted 
outcomes of Goulder et al.’s (2022) model for China’s special carbon market. Overall, mandate-based 
policies exhibit stronger emissions abatement effects than market-based policies. However, market-based 
policies are better at balancing economic growth with clean development. Each policy type has distinct 
advantages and disadvantages, depending on the evaluation criteria used.

Third, our treatment of multiple gradualist implementation policy scenarios in our econometric 
analysis provides a benchmark for general research on policy evaluation. When evaluating a specific 
policy, the presence of a mixture of highly correlated policies, often stemming from the non-random 
selection of pilot policy programs, can complicate the analysis. This may introduce the problem of 
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1 http://www.gov.cn/xinwen/2022-01/25/content_5670359.htm.
2 For instance, in December 2009, then-Premier Wen Jiabao pledged at the Copenhagen Climate Conference to reduce China’s carbon emissions 

per unit of GDP by 40% to 45% from 2005 levels by 2020. More recently, at the 75th United Nations General Assembly in December 2020, President Xi 
Jinping declared China’s goals to peak CO2 emissions by 2030 and achieve carbon neutrality by 2060.

omitted variables, leading to endogeneity and compromising the unbiasedness and consistency of the 
estimated results. To address this, many studies in environmental economics have incorporated additional 
policy initiatives into their evaluations to mitigate bias from omitted variables (e.g., Greenstone, 
2002; Auffhammer and Kellogg, 2011; Greenstone et al., 2012; Kahn and Mansur, 2013; Greenstone 
and Hanna, 2014; Li et al., 2020). Following this approach, our paper applies a similar methodology, 
integrating multiple climate policies within a unified analytical framework. This method not only avoids 
the bias associated with omitted variables but also facilitates a meaningful comparison and discussion of 
the effects of different types of climate policies.

The remaining structure of this paper is as follows: Section 2 explores the institutional background 
of China’s climate policies. Section 3 introduces a basic theoretical model. Section 4 details the data 
utilized in this study. Section 5 conducts a regression analysis. Section 6 presents the quantitative results 
along with a cost-benefit analysis. Finally, Section 7 concludes with key insights and remarks.

2. Institutional Framework Underpinning China’s Climate Policies
Climate change is widely recognized as one of the greatest challenges facing humanity in the 

21st century. Global greenhouse gas (GHG) emissions between 2010 and 2019 reached record levels, 
surpassing those of any previous decade and highlighting the urgent need for effective climate change 
mitigation (IPCC, 2022). Since overtaking the United States as the world’s largest GHG emitter in 2006, 
China’s climate change mitigation efforts have garnered significant global attention. As a responsible 
stakeholder, China’s approach to addressing climate change has shifted significantly, evolving from 
being seen as “a responsibility imposed upon us” to becoming “a mandatory initiative of our own 
choosing”1. On various international platforms, China has announced ambitious commitments to reduce 
carbon emissions2. To meet these commitments, China has implemented multidimensional climate 
policies. 

Since the State Council Information Office first released China’s Climate Change Response 
Policies and Actions (“White Paper”) in 2008, China has published this document annually to 
elaborate on its climate change policies, actions, and achievements from the previous year. The “Low-
Carbon Development Pilot and Demonstration Programs” section of the White Paper highlights the 
implementation of these policies and actions, as well as the outcomes achieved. Among the various 
initiatives, two long-term policies stand out: the Low-Carbon Pilot Provinces/Cities and the Carbon 
Trading Pilot Programs. 

A review of the White Paper summaries on climate change mitigation pilot programs between 2008 
and 2017 reveals that the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs 
were the most consistently mentioned climate policies. These two initiatives appeared in nine out of the 
ten years, underscoring their centrality to China’s climate strategy. In contrast, other pilot programs were 
not sustained as primary long-term policy instruments. For example, the Climate Adaptation City Pilot 
Programs were mentioned only once, while the Clean Development Mechanism (CDM) Pilot Programs, 
targeting corporate-level implementation, were cited in seven years but were absent from 2016 to 2021. 
Similarly, the Carbon Capture, Utilization, and Storage (CCUS) Pilot Programs, focusing on technical 
solutions, were mentioned in just one year. 

The White Paper reflects the Chinese leadership’s evolving understanding and evaluation of policy 
implementation. Following this framework, this paper focuses on the carbon emissions reduction 
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initiatives and mechanisms within the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot 
Programs. The subsequent sections will provide a detailed analysis of these two climate policies.

2.1 Low-Carbon Pilot Provinces/Cities
Amid China’s rapid urbanization and industrialization, cities accounted for 60% of the nation’s total 

energy consumption in 2009 (Song et al., 2019). To address the associated environmental challenges, 
the National Development and Reform Commission (NDRC) launched three waves of low-carbon pilot 
programs starting in 2010. These initiatives included ten provinces or municipalities, 68 prefectural cities 
or regions, and nine counties, districts, or county-level cities. The programs aimed to explore region-
specific pathways for controlling greenhouse gas (GHG) emissions3. As the pilot programs unfolded, 
local governments refined and expanded their low-carbon initiatives. These included efforts to develop 
low-carbon cities, industrial parks, and communities4. These measures sought to establish sustainable 
modes of production and lifestyles.

The central government did not establish explicit carbon reduction targets or specific measures for 
the low-carbon pilot provinces and cities. However, it outlined several key requirements. These included 
incorporating climate change considerations into local development plans, setting local greenhouse gas 
(GHG) emission reduction targets, identifying priorities, and formulating action plans. Additionally, 
local governments were tasked with taking responsibility for reducing GHG emissions within their 
jurisdictions. To ensure the effective implementation of these initiatives, the National Development and 
Reform Commission (NDRC) introduced oversight mechanisms to regularly monitor and evaluate the 
progress of the pilot programs.

Reductions in both total CO2 emissions and emissions intensity are crucial for mitigating climate 
change. However, in the implementation efforts of pilot provinces and cities, locally designed emissions 
reduction targets tend to prioritize reductions in total emissions over emissions intensity. For instance, 
between 2013 and 2014, Shenzhen emerged as a frontrunner among the first wave of Low-Carbon Pilot 
Cities, committing to peak its carbon emissions between 2017 and 2020. Similarly, all 29 pilot regions in 
the second wave set carbon emissions peak targets or total emissions control targets. By 2015, all pilot 
provinces and cities had either established or were in the process of developing carbon peak targets, with 
most aiming to achieve these peaks by 2025. By 2017, the majority of pilot cities had already adopted 
their carbon peak targets.

Reduction of carbon emissions intensity requires industrial transformation and technological 
upgrades, which pose significant challenges for local governments compared to the relatively 
straightforward goal of reducing total carbon emissions. To meet their commitments to emissions 
reduction, local governments may resort to less costly, “one-size-fits-all” measures, such as closures, 
suspensions, mergers, production shifts, and power rationing. However, these measures often come 
at the expense of short-term economic growth to achieve the goal of reducing total carbon emissions. 
Traditional research on government performance evaluation has largely focused on the relationship 
between economic performance and the promotion prospects of local officials. In recent years, however, 
environmental and energy management have emerged as critical dimensions in the evaluation of local 
government performance. Studies have shown that local officials in regions with better outcomes in air 
pollution control and energy efficiency are more likely to receive promotions (Zheng et al., 2014; Chen 

3 See NDRC Circular on Carrying Out Pilot Work for Low-Carbon Provinces and Cities (NDRC Climate No. 1587 [2010]), Circular on Carrying 
Out the Second Wave of Pilot Programs for Low-Carbon Provinces/Cities (NDRC Climate No. 3760 [2012]), and Circular on Carrying Out the Third 
Wave of Pilot Programs for National Low-Carbon Cities (NDRC Climate No. 66 [2017]).

4 For instance, Ankang City in Shaanxi Province announced plans to promote low-carbon commerce, towns, and communities following the 
implementation of pilot programs at the levels of cities, counties or districts, industrial parks, and key enterprises (https://www.ccchina.org.cn/Detail.
aspx?newsId=73194&TId=282).
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et al., 2016; Wang and Lei, 2020; Wu and Cao, 2021). This shift highlights the growing importance 
of environmental protection as a key criterion in assessing government officials’ performance. The 
proactive efforts of some government officials to achieve environmental objectives further support the 
hypothesis that “local governments will strive to meet emissions reduction targets even at the expense of 
economic growth.”

The concept of environmental management through mandate-based policies is not new. For 
example, in the power sector, China shut down 4,144 units of 538 power plants, primarily those with an 
installed capacity below 25,000 kW (Zhang, 2022). Similarly, mandate-based policies in Low-Carbon 
Pilot Provinces/Cities emphasize controlling emissions through direct regulations rather than market-
based tools. Local governments regulate emission quantities via command-and-control mechanisms, 
consistent with academic perspectives on mandate-based interventions (Sterner & Robinson, 2018).

Hence, we hypothesize that Low-Carbon Pilot Provinces/Cities can reduce total carbon emissions, 
but not necessarily carbon emissions intensity.

2.2 Carbon Trading Market
In alignment with the 12th Five-Year Plan’s goal to “gradually establish a carbon emissions trading 

market”, the General Office of the NDRC issued the Circular on the Implementation of Pilot Programs 
for Carbon Emissions Rights Trading on October 29, 2011 (NDRC Climate [2011] No. 2601). The 
Circular called for the launch of pilot programs for carbon emissions trading in Beijing, Tianjin, 
Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen, aiming to achieve greenhouse gas (GHG) 
emissions reduction targets at relatively low costs through market-based mechanisms. Among them, 
Shenzhen was the first to establish a carbon market, launching operations in June 2013. By the end of 
2013, carbon markets in Shanghai, Beijing, Guangdong, and Tianjin also became operational. Hubei and 
Chongqing followed, opening their carbon markets in April and June 2014, respectively. Additionally, 
Sichuan and Fujian provinces established nationally registered carbon trading institutions, commencing 
operations in December 2016.

Unlike the command-and-control approach employed in the Low-Carbon Pilot Provinces and 
Cities, carbon trading is widely recognized as a quintessential market-based instrument. It incentivizes 
enterprises to achieve carbon emission reduction targets through economic mechanisms by establishing 
a carbon trading market designed around the allocation of carbon emission rights (Blackman et al., 2018; 
Sterner and Robison, 2018). 

A key distinction among the various carbon trading markets worldwide lies in the allocation of 
carbon emission quotas. Common types of carbon markets include cap-and-trade (CAT) systems and 
tradable performance standard (TPS) markets. In most CAT systems, corporate carbon emission quotas 
are allocated externally and must not exceed the sum of the assigned quota and any additional quota 
purchased from other enterprises. 

Each pilot program has implemented a distinct quota allocation scheme tailored to a specific sector. 
Notably, the TPS mechanism was adopted for both the electric power and heating supply sectors, which 
accounted for the largest share of carbon emissions across various pilot programs (Zhang et al., 2017; 
Cui et al., 2023). Under the TPS system, the carbon quota allocated to each enterprise during a given 
period is determined by a combination of its output and the sectoral emissions intensity criterion (i.e., 
carbon quota per unit of output). In other words, the carbon quota an enterprise receives is endogenous 
to its production process during each period, rather than being predetermined. Enterprises can influence 
their quotas by adjusting their production output. While the sectoral emissions intensity is exogenously 
determined, the total carbon emissions for the entire carbon market are endogenous, as enterprise quotas 
depend on their current production output. Thus, even though market regulators can set the sectoral 
emissions intensity criteria, they cannot finalize the total carbon quota allocation until the production 
processes conclude at the end of the period.
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Under the CAT system, the carbon market ensures that the marginal cost of emissions reduction 
for all enterprises aligns with the price of carbon quotas, thereby minimizing the overall cost of 
carbon emissions reduction. In contrast, the TPS system effectively imposes an implicit carbon tax 
while simultaneously subsidizing production output (Fischer, 2001). This characteristic results in 
heterogeneous effects of China’s carbon market on different enterprises. Under the TPS system, each 
enterprise engages in continuous carbon trading until its marginal cost of emissions reduction equals the 
net price of carbon quotas, adjusted for production subsidies. The carbon emissions per unit of output 
vary across enterprises due to differences in technological levels and carbon intensity. Consequently, the 
net price of carbon quotas, after accounting for output subsidies, differs among enterprises. As a result, 
the marginal cost of emissions reduction also varies between enterprises at equilibrium.

Enterprises must either reduce production output or carbon intensity to comply with carbon 
emissions standards. Under the CAT system, enterprises have primarily adopted the strategy of reducing 
output (Goulder et al., 2022). However, under the TPS system, corporate responses differ significantly. 
Enterprises can be categorized as energy-intensive or non-energy-intensive based on whether they 
exceed their sectoral emissions intensity criteria. This distinction helps to analyze heterogeneous 
corporate responses under the TPS framework. According to TPS rules, non-energy-intensive enterprises, 
being below their sectoral emissions intensity criteria, generate a net surplus of carbon quota for each 
unit of increased production. This surplus arises because the carbon quota they receive exceeds their 
actual carbon emissions, allowing them to sell the excess in the carbon market for profit. In contrast, 
energy-intensive enterprises face a net deficit in carbon quota for each additional unit of production, 
requiring them to purchase extra quotas in the carbon trading market. Consequently, non-energy-
intensive enterprises are incentivized to increase production to benefit from the surplus, while 
energy-intensive enterprises must either reduce output or lower carbon intensity to comply with 
emissions regulations.

The above logical deduction illustrates that, within the framework of the TPS mechanism, energy-
intensive enterprises are incentivized to reduce their carbon intensity, whereas non-energy-intensive 
enterprises show no motivation to increase theirs. In other words, the reduction in carbon emissions 
intensity observed in pilot regions is an inherent outcome of the carbon trading market under the TPS 
mechanism. While the TPS mechanism drives energy-intensive enterprises to cut back on production, 
it simultaneously encourages non-energy-intensive enterprises to expand their output. As a result, Chen 
(2021) found that clean enterprises tend to increase their production in response to the carbon market, 
thereby offsetting the reductions in carbon emissions intensity and potentially leading to an overall 
increase in total carbon emissions.

Therefore, we hypothesize that the Carbon Trading Pilot Programs are likely to reduce carbon 
emissions intensity in the pilot regions. However, since the carbon trading market could potentially boost 
the production output of clean enterprises, the exact impact on total carbon emissions remains uncertain. 
This ambiguity necessitates empirical analysis to determine the actual direction of change.

2.3 Spatial Overlap between the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot 
Programs

It needs to be noted that there exists a significant overlap in the spatial distribution of the Low-
Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs. Take the samples of 2017 for 
instance, 36.93% of the counties and districts were covered by only one pilot policy, and as much as 
13.36% of the counties and districts were selected as Low-Carbon Pilot Promises/Cities and Carbon 
Trading Pilot Programs at the same time. Such overlap stems from the non-representativeness of selected 
pilot programs, which can be ascribed to the following reasons:  First, a province or city is selected by 
the central government for the implementation of more than one pilot program because it possesses 
better conditions to experiment with and demonstrate the effects of new policies. Second, another reason 
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is that some government officials are incentivized to participate in multiple central government pilot 
programs under career promotion considerations, leading to the non-representativeness in the selection 
of pilot programs (Wang and Yang, 2021). As such, the evaluation of the emissions reduction effect of 
a single climate policy is likely to lead to the bias of omitted variables, leading to a misjudgment of the 
claimant policy’s emissions reduction effect.

It is important to note that there is a significant overlap in the spatial distribution of Low-Carbon 
Pilot Provinces/Cities and Carbon Trading Pilot Programs. For instance, in 2017, 36.93% of counties and 
districts were covered by only one pilot policy, while 13.36% were simultaneously designated as Low-
Carbon Pilot Provinces/Cities and included in Carbon Trading Pilot Programs. This overlap arises from 
the non-representativeness of the selected pilot programs, which can be attributed to several factors: 
First, provinces or cities are often chosen by the central government for multiple pilot programs because 
they possess favorable conditions for experimenting with and demonstrating the impact of new policies. 
Second, some government officials may be motivated to participate in multiple central government 
pilot programs as a means to advance their careers, further contributing to the non-representativeness 
of the selection process (Wang and Yang, 2021). As a result,  overlooking other climate policies when 
evaluating the emission reduction effect of a single climate policy may lead to omitted variable bias, 
resulting in a misjudgment of the effectiveness of that climate policy in reducing emissions.

3. Theoretical Model
Based on the characteristics of the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot 

Programs, we have developed a simplified static model to illustrate the responses of energy-intensive and 
clean enterprises to both mandate-based measures and market-based mechanisms. This model allows us 
to analyze changes in carbon emissions, total output, and carbon emissions intensity at the regional level. 
We will examine four distinct scenarios: No Climate Policy, the Low-Carbon Pilot Provinces/Cities, the 
Carbon Trading Pilot Programs, and the Overlap between the Two Policies.

3.1 Basic Model Specifications and the No-Climate-Policy Scenario
In reference to the classical model specification for environmental economics, it is assumed that 

enterprises i [0,1] are continuously uniformly distributed across a region and accept the external product 
price p. The production cost function is C0 + C(qi ) for all enterprises, where qi is the production output, 
C0 is the fixed cost of production, and C(qi ) is the variable cost of production. It is assumed that the 
production cost function increases with output, i.e., MC(qi )=C' (qi )>0. Furthermore, the production cost 
function is a concave function of output, i.e., MC' (qi )=C' ' (qi )>0. As a result, the marginal cost function 
has an inverse relationship with production output.

Differences between enterprises lies in the carbon emissions intensity μi . It is assumed that μi  does 
not change with time. This assumption is supported by reality because technological progress is a long 
process and free from “low-hanging fruit”, making it difficult for enterprises to reduce carbon emissions 
intensity on their own initiative (Cao et al., 2021; Chen et al., 2021). Carbon emissions from enterprises 
are ei =μi qi . The decision-making variable for enterprises is corporate output qi , and the decision-making 
objective is to maximize profit πi . As far as this region is concerned, the total output is q=∫0

1qi di, carbon 
emissions are e*=∫0

1μi qi di, and carbon emissions intensity is μ=e/q.
The differences between enterprises lie in their carbon emissions intensity μi . It is assumed that μi  

does not change over time. This assumption reflects reality, as technological progress is a slow process 
and devoid of ‘low-hanging fruit,’ making it difficult for enterprises to independently reduce their carbon 
emissions intensity (Cao et al., 2021; Chen et al., 2021). The carbon emissions from enterprises are 
denoted as ei =μi qi . The decision-making variable for enterprises is their output qi , with the objective of 
maximizing profit πi . For this region, the total output is q=∫0

1qi di, total carbon emissions are e*=∫0
1μi qi di, 
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and the carbon emissions intensity is μ=e/q.
Under the No Climate Change Policy scenario, an enterprise i makes the following decision:

                maxπi =pqi −C0−C(qi )
qi

                (1)

Taking the partial derivative of production output with respect to the profit function allows us to 
determine the enterprise’s optimal output based on the first-order condition qi

*=MC −1( p). Under the No 
Climate Policy scenario, the regional total output is specified as q*=∫0

1qi
*di=MC −1( p), carbon emissions 

are e=∫0
1μi qi

*di=q*∫0
1μi di, and carbon emissions intensity is μ*=e*/q*=∫0

1μi di. This analysis helps to assess 
the economic and environmental trade-offs in the absence of climate policies.

3.2 Low-Carbon Pilot Province/City Scenario
Mandate-based measures are designed for aggregate control, as it is challenging for the government 

to obtain precise information about enterprises’ carbon emissions intensity. In our model, these measures 
are represented as a proportional restriction on corporate production output, ensuring it does not exceed λ,  
λ (0,1) of the production level under the No Climate Policy scenario. Enterprise i make decisions based 
on the following approach:

                maxπi =pqi −C0−C(qi )
qi

                (2)

                      s.t.qi  ≤ λqi
*                       (3)

Compared to the No Climate Policy scenario, it is evident that the restrictive condition is a tight 
constraint qi

G=λqi
*  (as shown in Figure 1a). Under the Low-Carbon Pilot Province/City scenario, total 

regional output is qG=∫0
1qi

Gdi=λq* , carbon emissions are eG=∫0
1μi qi

Gdi=λe* , and carbon emissions intensity 
is μG=eG/qG=μ* . This indicates that while mandate-based measures have successfully reduced regional 
carbon emissions, their effect on carbon emissions intensity remains neutral.

3.3 Carbon Trading Pilot Programs Scenario
Under the TPS system, it is assumed that the sectoral emissions intensity criterion μ and the unit 

price of carbon τ >0 in the carbon trading market are externally determined for the enterprise. If the 
enterprise’s actual emissions intensity is below the criterion μi <μ, it can sell its surplus carbon quota 
in the market. Conversely, if the emissions intensity exceeds the criterion, the enterprise must purchase 
additional carbon quotas from the market. Accordingly, Enterprise i makes the following decision:

               maxπi =pqi −C0−C(qi )− τ (μi − μ  )qi
qi

            (4)

Taking the partial derivative of production output with respect to the profit function, we arrive at the 
first-order condition qi

M=MC −1( p+τμ −τμi ). For clean enterprises, μi <μ, and qi
M>qi

*  leads to an increase 
in corporate production output. Conversely, for energy-intensive enterprises, μi > μ, and qi

M< qi
*  leads 

to a reduction in corporate production output. The carbon trading market effectively acts as an implicit 
subsidy provided by energy-intensive enterprises to clean enterprises. This mechanism causes the 
marginal yield curve of clean enterprises to shift upward, while that of energy-intensive enterprises shifts 
downward, as illustrated in Figure 1a.

Under the Carbon Trading Pilot Program policy scenario, total regional output is qM=∫0
1qi

Mdi= 
∫0
1MC −1( p+τμ −τμi )di, carbon emissions are eM=∫0

1μi qi
Mdi= ∫0

1μi MC −1( p+τμ −τμi )di, and carbon emissions 
intensity is μM=eM/qM= ∫0

1μi qi
Mdi /∫0

1qi
Mdi. However, we cannot directly determine the signs of qM relative to 

q*  and eM to e* , as these depend on the specific form of the marginal cost function and the distribution of 
corporate carbon emissions intensity. As a result, the theoretical model alone cannot provide definitive 
predictions and must instead be validated through empirical testing.
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However, we can demonstrate that regional carbon emissions intensity has decreased. This can 
be explained as follows: μ*=∫0

1μi di represents the mean value of corporate emissions intensity, while 
μM=∫0

1μi (qi
M/∫0

1qj
Mdj)di denotes the weighted average of corporate emissions intensity based on corporate 

production output. Due to the increased weight of clean enterprises and the decreased weight of energy-
intensive enterprises, we have: μM<μ* .

In essence, the carbon trading market reduces overall carbon emissions intensity by promoting the 
growth of clean enterprises and curbing the output of energy-intensive ones.

3.4 Overlap between the Two Policy Scenarios
When a region simultaneously implements Low-Carbon Province/City Pilot Programs and Carbon 

Trading Pilot Programs, certain enterprises will participate in the carbon market, while those outside it 
will be governed by mandate-based regulations. We assume enterprises outside the carbon market are i
[0,α], and those within the carbon market are j (α,1], α (0,1).

When the two policies overlap, regional total output becomes qG+M=∫0
α
qi

Gdi+∫1
αqj

Gdj=αqG+（1−α）qM, 
carbon emissions are eG+M=αeG+（1−α）eM, and carbon emissions intensity is μG=eG+M/qG+M. Under such 
overlap, it is not possible to theoretically predict changes in these variables, necessitating empirical 
testing. More importantly, evaluating one policy without considering the influence of the other may 
result in biased conclusions. Therefore, it is essential to integrate both policies simultaneously into the 
regression analysis framework.

4. Data Source
We compiled the list of names and initiation dates of the three waves of low-carbon provinces and 

cities based on public announcements from the National Development and Reform Commission (NDRC). 
Additionally, we gathered the market launch dates for various carbon trading pilot programs using 
publicly available online resources. Using carbon emissions data from the Carbon Emissions Accounts 
and Datasets (CEADs) and socioeconomic data from the China Stock Market & Accounting Research 
Database (CSMAR), we conducted a regression analysis to evaluate the effects of China’s major climate 
policies on CO2 emissions reduction at the county level between 2008 and 2017. This section provides a 
detailed description of the data employed in the analysis.

Figure 1: Theoretical Model Illustration
Notes: Subscript 1 in Figure 1b denotes clean enterprises, and Subscript 2 denotes energy-intensive enterprises, i.e. μ1< μ <μ2.
Source: Drawn by the authors based on the model.

a. Low-Carbon Province/City Pilot Programs b. Carbon Trading Market Pilot Programs
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4.1 CO2 Emissions Data
Carbon dioxide (CO2) is the greenhouse gas with the most significant impact on climate change. 

Reducing CO2 emissions is, therefore, a central objective of climate governance (Solomon et al., 2009; 
Montzka et al., 2011). This study employs China’s county-scale carbon emissions dataset, developed by 
Chen et al. (2020) through the CEADs. This dataset provides CO2 emissions data for 2,735 counties and 
districts in China, covering the period from 1997 to 2017. Given that China did not publish a white paper 
systematically outlining its climate policy until 2007, and that the county-scale carbon emissions data 
extend only through 2017, our analysis focuses on evaluating the emissions reduction effects of China’s 
climate policy during the decade from 2008 to 2017.

Our climate change research is primarily limited by the availability of carbon emissions accounting 
and monitoring data from China. By integrating various previous accounting methods, CEADs have 
enabled the calculation of carbon emissions on both long-term and highly granular scales. 

First, we multiplied the consumption of different types of energy by their respective carbon 
emissions coefficients to estimate the emissions from each energy source, based on officially published 
provincial-level energy emissions data. These energy-specific emissions were then aggregated to 
calculate total carbon emissions at the provincial level. 

Next, we downscaled the provincial-level energy-related carbon emissions using nighttime light 
data as a weight, to derive carbon emissions estimates at the county level. County-level emissions 
data are disaggregated from the provincial totals based on the intensity of economic activities, while 
provincial-level emissions are calculated based on energy consumption. Economic activity is quantified 
using nighttime light data, which, along with the energy consumption data, avoids the “spatial spillover” 
problem. As a result, the county-level carbon emissions data are not subject to the spatial spillover issues 
often present in satellite-retrieved emissions data. 

CEAD carbon emissions data cover 87% of China’s land area, 90% of its population, and 90% of its 
GDP, providing the most detailed and comprehensive database of county-level emissions in the country.

4.2 Climate Policy Data
In its circular on the implementation of Low-Carbon Pilot Provinces/Cities5, the NDRC has outlined 

the scope for each phase of the Low-Carbon Pilot Provinces/Cities program. Based on this, we have 
compiled a list of the names and initiation dates for the three waves of pilot provinces/cities. The second 
wave of pilot programs was announced in December 2012, with 2013 designated as the initiation year 
for this phase. The initiation dates for the first and third waves of pilot programs are based on the release 
dates of the official documents.

Utilizing publicly available information from the Internet, we identified the market opening dates 
of various carbon trading pilot programs as the initiation dates for these programs. We did not use the 
NDRC’s notification dates for the Carbon Trading Pilot Programs, as there was often a significant delay 
between the official designation and the actual launch of the programs. For instance, while the NDRC 
issued a notice in October 2011 (NDRC Climate [2011] No. 2601) regarding the implementation of the 
first wave of pilot programs in “two provinces and five cities”, it wasn’t until June 2013 that Shenzhen’s 
carbon market was initiated, and Chongqing’s market only opened in June 2014, taking the longest time 
to start. Therefore, using the carbon market opening dates as the starting point for policy implementation 
is more consistent with the actual timeline. Additionally, although Sichuan and Fujian provinces were 
not part of the initial wave of pilot programs, they also established nationally registered carbon trading 
institutions and are included in the carbon trading policy treatment group.

5 NDRC Climate [2010] No.1587, NDRC Climate [2012] No.3760, and NDRC Climate [2017] No.66.
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4.3 Socioeconomic Data
The socioeconomic data used in this paper are sourced from the CSMAR database, covering the 

total population, regional GDP, and per capita regional GDP for counties and districts in China from 
2007 to 2017. For the analysis, we have matched the carbon emissions data, climate policy data, and 
socioeconomic data at the county level. Descriptive statistics for these variables are presented in Table 1.

Table 1: Descriptive Statistics

Name of variable Variable definition Measurement unit Average Standard 
deviation Min. Max. Number of 

observations

emission Carbon emissions million tons 3.211 3.288 0 56.429 27 320

emission_2007 Carbon emissions in 2007 million tons 2.364 2.581 0 47.519 27 320

emission_gdp Carbon emissions per unit of GDP Ton/10,000 yuan 2.674 2.596 0 48.316 21 574

emission_pop Per capita carbon emissions Ton/person 7.782 10.85 0 215.909 18 848

gdp Regional GDP 100 million yuan 176.498 295.689 0.751 9270.309 21 574

pop Year-end total population 10,000 persons 49.645 34.976 1 366.183 18 848

pop_2007 Total population at the end of 2007 10,000 persons 48.479 34.577 1.133 305.448 18 780

pergdp_2007 Per capita GDP in 2007 10,000 yuan/person 1.486 1.358 0.197 17.107 20 570

5. Regression Analysis
Following the method outlined by Dobkin et al. (2018), we examine the carbon emissions reduction 

effects of the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs between 2008 
and 2017, within the framework of event analysis. First, we apply a non-parametric event analysis 
method to capture changes in carbon emissions before and after the policy implementation, thereby 
highlighting the dynamic effects of climate policy. Specifically, we employ the following regression 
equation:

    yct =α+   μr Pilotcrt +   μr Pilotcrt +   τw ETScwt +   τw ETScwt +Xc,2007γt +δc + ct∑ ∑ ∑∑
r=−4 r=0 w=0w=−4

−2 3 3−2

     (5)

In the above equation, c and t denote county/district and year, respectively. yct is the core explained 
variable, specifically representing total carbon emissions (added 1 before taking the natural logarithm). 

Pilotcrt is the dummy variable corresponding to the relative year of the implementation of the Low-
Carbon Pilot Provinces/Cities. Specifically, if the Low-Carbon Pilot Provinces/Cities policy had been 
implemented for a duration of r years for the province/city where county c is located in year t, then its 
value is set to 1; otherwise, it is 0. 

Similarly, ETScwt is also the dummy variable for the relative year of the implementation of the Low-
Carbon Pilot Provinces/Cities. By the same token, if the Low-Carbon Pilot Provinces/Cities policy had 
been implemented for a duration of w years for the province/city of county c in year t, its value is 1; 
otherwise, it is 0. 

We have set the policy window to cover the period from four years prior to the pilot program 
implementation to three years after the implementation. This is because the Carbon Trading Pilot 
Programs only began to be carried out on a large scale in 2014. There were a total of four years between 
the year of policy implementation and 2017 (the final phase of the samples), which is the reason for 
choosing this four-year period. 

To ensure consistent time windows before and after the implementation (i.e., ex-ante and ex-post), 
we have designated a four-year time window and defined Pilotc(−4)t and ETSc(−4)t as the dummy variables 
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for samples that are four or more years earlier from the implementation of the pilot program policy. Such 
a selection offers a relatively long time window for testing the policy effects, guarantees the consistency 
of the lengths of the ex-ante and ex-post time windows, and helps avoid the problem of insufficient 
observations resulting from an overly long timeframe.

The designation of a locality as part of the Climate Policy Pilot Program, as well as the timing of 
such designation, depends on local socioeconomic factors, which are often correlated with economic 
performance and carbon emissions. Economically dynamic regions with higher carbon emissions are 
generally more motivated to implement structural adjustments, making them more likely to be selected 
for pilot programs earlier than others. Therefore, it is essential to further control for key covariates 
to obtain more accurate estimates of the effects on emissions reduction. In this paper, we employ an 
interaction term between predetermined covariates Xc,2007 for various counties and districts from the 
previous sample phase (2007), including total population at year-end and per capita GDP, and the 
dummy variable for year γt , using this as a control to account for socioeconomic differences across 
counties and districts.

The fixed effect δc of counties and districts is included to control for time-invariant differences 
across counties and districts. The fixed effect of year γt is included to account for common shocks 
affecting all counties and districts at the national level. The residual error term ct is included to address 
potential heteroscedasticity issues. In the regression analysis, we have clustered standard errors at the 
district/county level, following the approach of Bertrand et al. (2004).

The coefficients corresponding to the Low-Carbon Pilot Provinces/Cities and the Carbon Trading 
Pilot Programs are denoted as μr  and τw, respectively. In the equation above, μr and τw represent the 
dynamic effects on the relevant variables of the counties and districts of the Low-Carbon Pilot Provinces/
Cities and Carbon Trading Pilot Programs before and after the implementation of the relevant policies 
relative to non-pilot counties and districts. It is important to note that, unlike the separately estimated 
carbon emission reduction effects of these two types of policies, μr and τw capture the carbon emission 
reduction effects when the other policy is given. In the following sections of this paper, we will compare 
the differences between the estimated results when considering each policy individually and when both 
policies are considered simultaneously.

The identification assumption of the non-parametric event analysis method is that, after controlling 
for relevant variables, the implementation time of a pilot policy is unrelated to the level of the explained 
variable. Previous studies typically used the parallel trend test to bolster confidence in this identification 
assumption. However, the selection of pilot programs is not entirely random, and researchers cannot 
fully control for unobservable variables that may influence the selection process. Consequently, it is 
likely that the ex-ante parallel trend assumption may not hold. To address this, we adopted a parametric 
event analysis method to more accurately estimate the effects of the pilot policies. Based on the 
estimated results from equation (5), we chose a linear function to model the ex-ante trend. Specifically, 
the following regression equation is used to estimate the effects of the Low-Carbon Pilot Provinces/
Cities and the Carbon Trading Pilot Programs.

     yct =α'+ρr+   μ'r Pilotcrt +   τ'w ETScwt +   τ'w ETScwt +Xc,2007γt +δc + 'ct∑ ∑
r=0 w=0

3 3

∑
w=−4

−2

          (6)

     yct =α''+   μ''r Pilotcrt +   μ''r Pilotcrt +ψw +   τ''w ETScwt +Xc,2007γt +δc + ''ct∑
r=−4

−2

∑
r=0

3

∑
w=0

3

    (7)

In equation (6), we focus on the coefficient μ'r, which represents the policy effect after the 
implementation of the Low-Carbon Pilot Provinces/Cities, based on the ex-ante trend ρ relative to the 
period prior to the policy implementation. In equation (7), we focus on the coefficient τ''w, which captures 
the policy effect after the implementation of the Carbon Trading Pilot Programs, based on the ex-ante 
trend ψ relative to the period before the policy implementation.
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In the case of the parametric event analysis method, the identification assumption is that the 
implementation time of the pilot policy is uncorrelated with change in the explained variable, which is 
generally easier to satisfy compared to the identification assumption of the non-parametric event analysis 
method. To assess the validity of this assumption, we will examine the linear fit of the ex-ante trend. 
This will help test the confidence in the identification assumption for estimation using the parametric 
event analysis method. For rigor, we define the results from the parametric estimation as the baseline 
regression outcome, following the approach of Dobkin et al. (2018) and Chen and Lan (2020), while 
presenting the non-parametric estimation results in the accompanying chart.

6. Regression Analysis Results
6.1 Baseline Regression Results

Table 2 presents the results of our non-parametric event analysis. Columns (1) and (3) show 
the estimated results when considering either the Low-Carbon Pilot Provinces/Cities or the Carbon 
Trading Pilot Programs separately. Columns (2) through (4) display the results of the non-parametric 
event analysis for both policies simultaneously. To mitigate multicollinearity, we use the one-year ex-
ante effect as the baseline group in all our non-parametric event analyses. The regression coefficient 
represents the difference in the explained variable for a given ex-ante (or ex-post) year relative to the 
year immediately preceding the policy implementation.

Table 2: Results of the Non-Parametric Event Analysis

ln (1+carbon emissions)
Low-Carbon Pilot Provinces/Cities Carbon Trading Pilot Programs

(1) (2) (3) (4)

Four-year ex-ante effect
-0.006 -0.004 0.047*** 0.041***

(0.006) (0.006) (0.004) (0.004)

Three-year ex-ante effect
-0.006 -0.002 0.011*** 0.004**

(0.004) (0.004) (0.002) (0.002)

Two-year ex-ante effect
0.000 -0.000 0.012*** 0.006***

(0.001) (0.001) (0.001) (0.001)

Current-year effect of policy 
implementation

0.000 0.000 -0.005*** -0.005***

(0.002) (0.002) (0.001) (0.001)

One-year ex-post effect
-0.016*** -0.008** -0.012*** -0.002

(0.003) (0.003) (0.004) (0.004)

Two-year ex-post effect
-0.019*** -0.011*** -0.012** -0.002

(0.003) (0.003) (0.005) (0.005)

Three-year ex-post effect
-0.036*** -0.028*** -0.022*** -0.013**

(0.004) (0.004) (0.006) (0.006)

Fixed effect of district/county Controlled Controlled Controlled Controlled

Fixed effect of year Controlled Controlled Controlled Controlled

The other pilot policy Not controlled Controlled Not controlled Controlled

Control variables Controlled Controlled Controlled Controlled

Observations 20570 20570 20570 20570

Notes: The data in columns (1) and (4) are based on the same regression equation. *, **, and *** denote statistical 
significance at the 10%, 5%, and 1% levels, respectively. Numbers in parentheses are standard errors. The control variables 
include the interaction terms between the population at the end of 2007 and the year dummy variable, as well as between 
regional per capita GDP in 2007 and the year dummy variable. The same applies to the other columns.
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A comparison of the coefficients for the Low-Carbon Pilot Provinces/Cities (Carbon Trading Pilot 
Programs) in columns (1) (3) and (2) (4) reveals that focusing on a single policy without considering 
the combined effect of both significantly overestimates the emissions reduction results. This also suggests 
that neglecting other climate policies can impact the consistency of the estimated results, as omitting relevant 
variables leads to substantial bias. The results in columns (1) and (2) show that when the Carbon Trading 
Pilot Programs are excluded, the emissions reduction effect of the Low-Carbon Pilot Provinces/Cities is 
overestimated. Similarly, columns (3) and (4) demonstrate that when the Low-Carbon Pilot Provinces/Cities 
are ignored, the emissions reduction effect of the Carbon Trading Pilot Programs is also overestimated. 
Additionally, the identification assumption of the non-parametric event analysis method is not satisfied due 
to the significant ex-ante trend observed in the estimated results for the Carbon Trading Pilot Programs. 
Therefore, this coefficient cannot be interpreted as the actual policy effect. As a result, we turn to the 
parametric event analysis method to more accurately estimate the emissions reduction effects of both 
climate change mitigation pilot policies, with the baseline regression results presented in Table 3.

Table 3: Baseline Regression Results
ln (1+carbon emissions)

Low-Carbon Pilot Provinces/Cities Carbon Trading Pilot Programs
Non-parametric 

estimation
Parametric 
estimation

Non-parametric 
estimation

Parametric 
estimation

(1) (2) (3) (4)

Four-year ex-ante effect
-0.006 0.029**
(0.007) (0.014)

Three-year ex-ante effect
-0.004 -0.011
(0.006) (0.007)

Two-year ex-ante effect
0.001 0.007*

(0.001) (0.004)
Current-year effect of policy 
implementation

-0.003* -0.006** -0.032*** 0.007**
(0.002) (0.003) (0.011) (0.003)

One-year ex-post effect
-0.012** -0.018*** -0.016 0.007
(0.005) (0.005) (0.012) (0.005)

Two-year ex-post effect
-0.011* -0.019*** -0.019 0.011*
(0.006) (0.007) (0.014) (0.006)

Three-year ex-post effect
-0.032*** -0.043*** -0.059** 0.010

(0.010) (0.010) (0.024) (0.010)

Ex-ante trend
0.002 -0.010*

(0.002) (0.005)
Fixed effect of district/county Controlled Controlled Controlled Controlled
Fixed effect of year Controlled Controlled Controlled Controlled
The other pilot policy Controlled Controlled Controlled Controlled
Control variables Controlled Controlled Controlled Controlled
Observations 7730 7730 4040 4040

The parametric event analysis method requires the inclusion of the ex-ante temporal trend. However, 
some counties and districts have never been exposed to a specific pilot policy, meaning their ex-ante 
temporal trend cannot be defined. Therefore, when evaluating a given policy, we retain only the samples 
that have experienced that policy, while controlling for the other policy in our regression analysis to 
avoid bias from omitted variables. Since the samples are no longer representative of the complete 
samples, the results are not directly comparable to those from the non-parametric event analysis in Table 
2. To address this, we present the non-parametric estimated results for the Low-Carbon Pilot Provinces/
Cities (Carbon Trading Pilot Programs) based on the new samples in columns (1) and (3), alongside the 
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corresponding parametric estimates in columns (2) and (4), which reflect the baseline regression results 
for the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs.

According to the results in column (2) of Table 3, after accounting for the impact of the ex-ante 
trend, there is a significant reduction in carbon emissions in the year of implementation of the Low-
Carbon Pilot Provinces/Cities. Furthermore, the longer the duration of policy implementation, the more 
significant the downward trend in carbon emissions. In the third year of the policy’s implementation, 
emissions decreased by 4.3%. Results in column (4) suggest that, compared with the counterfactual 
analysis after linear fitting, carbon emissions increased by 0.7% in the year of implementation of the 
Carbon Trading Pilot Programs, rose by 1.1% two years after the policy’s implementation, and showed 
no significant change in subsequent years. Over the time period covered by our study, carbon emissions 
decreased by an average of 2.67% per year within three years of implementing the Low-Carbon Pilot 
Provinces/Cities, while emissions increased by 0.93% per year within three years of implementing the 
Carbon Trading Pilot Programs. In other words, the Low-Carbon Pilot Provinces/Cities have led to a 
significant reduction in carbon emissions, while the Carbon Trading Pilot Programs have resulted in a 
slight increase in emissions in the pilot regions.
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Figure 2: Results of Event Analysis: Carbon Emissions
Notes: Solid dots represent the estimated coefficients μr or τw from the non-parametric event analysis, while hollow dots indicate the 95% confidence 
intervals for these coefficients. The dashed lines represent the ex-ante trend of total carbon emissions, estimated using the parametric event analysis 
method, and correspond to the estimated levels from the non-parametric event analysis.
Source: Drafted by authors according to empirical results.

Our baseline regression results show that the Low-Carbon Pilot Provinces/Cities have significantly 
reduced carbon emissions in the pilot regions, while the Carbon Trading Pilot Programs have resulted in 
a slight increase in carbon emissions. Next, we will examine the mechanisms through which the Low-
Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs influence carbon emissions and 
explore the reasons behind the differences in their emissions reduction effects.

To test the robustness of our baseline regression results, we conducted a series of robustness 
checks (detailed in the Online Appendix). These tests include controlling for the energy conservation 
and emissions reduction targets outlined in the “Five-Year Plans”, introducing relevant industrial and 
energy-related control variables, accounting for more granular differences in ex-ante characteristics, and 
replacing the proxy variable for carbon emissions. Additionally, we examined heterogeneous treatment 
effects following the approach of Sun and Abraham (2021). The results of these robustness tests suggest 
that our conclusions are not affected by the factors mentioned above.

6.2 Mechanism Analysis
The change in carbon emissions can be decomposed into two components: the “technical effects”, 
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which refer to changes in carbon emissions intensity, and the “scale effect”, which reflects changes in 
economic output (Jaraitė et al., 2022). To explore the mechanisms through which Low-Carbon Pilot 
Provinces/Cities and Carbon Trading Pilot Programs influence carbon emissions, we examine how these 
two types of pilot programs affect both carbon emissions intensity and regional GDP. Table 4 presents the 
parametric and non-parametric estimation results of the mechanism analysis. Figure 3 illustrates the impact 
of the two types of climate policies on carbon emissions intensity and regional GDP, based on non-parametric 
estimates, and shows the ex-ante linear trend of the explained variable obtained from the parametric 
estimation. The results indicate that both the impact of Low-Carbon Pilot Provinces/Cities on carbon 
emissions intensity and regional GDP, as well as the impact of the Carbon Trading Pilot Programs on 
carbon emissions, exhibit a significant ex-ante trend, which is effectively captured by the linear function. 
Therefore, we primarily rely on the parametric estimation results in Table 4 for our analysis.

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3
Year relative to Low Carbon Pilot

Pre-pilot Mean=1

-4 -3 -2 -1 0 1 2 3

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

lo
g(

1+
Em

iss
io

n 
In

te
ns

ity
）

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

lo
g(

1+
G

D
P ）

0.15
0.1

0.05
0

-0.05
-0.1

-0.15
-0.2lo

g(
1+

Em
iss

io
n 

In
te

ns
ity
）

a. Low-Carbon Pilot Provinces/Cities: Carbon emissions intensity

 c. Low-Carbon Pilot Provinces/Cities: Regional GDP

b. Carbon Trading Pilot Programs Carbon emissions intensity

d. Carbon Trading Pilot Programs Regional GDP

Figure 3: Results of Event Analysis: Carbon Emissions Intensity and Regional GDP
Notes: Solid points represent the estimated coefficient μr or τw from the non-parametric event analysis method, while hollow points indicate the 95% 
confidence interval of the coefficient. The dotted lines illustrate the ex-ante trend of the explained variable, as estimated using the parametric event 
analysis method, and align with the estimated level from the non-parametric event analysis method.
Source: Drafted by the authors according to the empirical results.
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The results in column (2) of Table 4 show that after fully accounting for the ex-ante trend, the 
implementation of the Low-Carbon Pilot Provinces/Cities did not lead to any significant change in 
carbon emissions intensity. On the other hand, column (6) indicates a statistically significant 2.2% 
reduction in regional GDP in the year of implementation in the Low-Carbon Pilot Provinces/Cities. 
Moreover, this restrictive effect persisted over time, with the restrictive effect on regional GDP in the 
Low-Carbon Pilot Provinces/Cities reaching 6.1% in the third year after policy implementation. Over 
the three years following the policy’s implementation, there was little to no significant change in carbon 
emissions intensity, either statistically or economically, while regional GDP declined at an annual 
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average rate of 3.87%. This suggests that the reduction in emissions in the Low-Carbon Pilot Provinces/
Cities was primarily driven by a contraction in overall economic output, rather than by a straightforward 
decrease in carbon emissions intensity.

The results in column (4) suggest that, during the initial phase of implementation, the Carbon 
Trading Pilot Programs had a limited impact on reducing carbon emissions intensity. It was only two 
years after the policy was introduced that carbon emissions intensity decreased by 1.5%, and by the third 
year, the reduction had reached 3.1%. Over the three years following the implementation of the Carbon 
Trading Pilot Programs, the pilot regions saw an average annual reduction of 1.83% in carbon emissions 
intensity, indicating a growing share of clean production in these areas. 

However, as shown in column (8), the implementation of the Carbon Trading Pilot Programs was 
followed by a significant increase in regional GDP, with the effect on production growing over time. 
Within three years of policy implementation, regional GDP increased by an average of 3.13% per year. 
This means that the Carbon Trading Pilot Programs both increased carbon emissions intensity and 
stimulated regional production, with the latter effect being more evident. The combined outcome for 
both carbon emissions intensity and regional production was a modest increase in carbon emissions in 
the pilot regions.

Table 4: Results of Mechanism Analysis

ln(1 + Carbon emissions intensity) ln(1 + Regional GDP)
Low-Carbon Pilot 
Provinces/Cities

Carbon Trading Pilot 
Programs

Low-Carbon Pilot 
Provinces/Cities

Carbon Trading Pilot 
Programs

Non-
parametric 
estimation

Parametric 
estimation

Non-
parametric 
estimation

Parametric 
estimation

Non-
parametric 
estimation

Parametric 
estimation

Non-
parametric 
estimation

Parametric 
estimation

(1) (2) (3) (4) (5) (6) (7) (8)

Four-year ex-ante effect
0.038*** 0.068*** -0.041** 0.007
(0.013) (0.021) (0.017) (0.023)

Three-year ex-ante effect
0.019** -0.000 -0.022** 0.015
(0.009) (0.014) (0.011) (0.015)

Two-year ex-ante effect
0.017*** 0.018** -0.019*** -0.009
(0.004) (0.009) (0.005) (0.010)

Current-year effect of policy 
implementation

-0.004 0.009 -0.074*** -0.006 -0.009** -0.022*** 0.027 0.020
(0.004) (0.006) (0.016) (0.009) (0.005) (0.008) (0.019) (0.015)

One-year ex-post effect
-0.022** 0.002 -0.060*** -0.009 -0.011 -0.035*** 0.013 0.029*
(0.009) (0.009) (0.019) (0.010) (0.011) (0.011) (0.024) (0.015)

Two-year ex-post effect
-0.041*** -0.006 -0.085*** -0.015* 0.017 -0.020 0.023 0.031***

(0.010) (0.012) (0.021) (0.008) (0.014) (0.014) (0.024) (0.010)

Three-year ex-post effect
-0.053*** -0.005 -0.169*** -0.031** -0.011 -0.061*** 0.033 0.034

(0.013) (0.018) (0.034) (0.016) (0.016) (0.023) (0.039) (0.021)

Ex-ante trend
-0.012*** -0.023*** 0.013** -0.003

(0.004) (0.007) (0.006) (0.008)
Fixed effect of district/
county Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled

Fixed effect of year Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled

The other pilot policy Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled

Control variables Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled

Observations 7401 7,401 3,941 3,941 7,401 7,401 3,941 3,941

Notes: Each column of results corresponds to a regression equation.
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To investigate the effect of climate policy on output in greater detail, we re-estimated the model 
parametrically, using the size and share of the secondary industry in each county as the explained 
variable. The results closely align with our baseline findings, suggesting that the economic impact of 
climate policies is predominantly driven by the energy- and carbon-intensive secondary sector.

Based on the analysis above, we find that the Low-Carbon Pilot Provinces/Cities and the Carbon 
Trading Pilot Programs impact carbon emissions through fundamentally different mechanisms. The 
Low-Carbon Pilot Provinces/Cities do not exhibit a significant technological effect, but instead show a 
negative scale effect. Specifically, these regions experience a decrease in GDP while carbon emissions 
intensity remains steady, leading to a reduction in total carbon emissions. In contrast, the Carbon Trading 
Pilot Programs are characterized by both technological advancements and skill development that help 
reduce carbon emissions intensity. The latter effect is more evident, resulting in an overall increase in 
total carbon emissions despite the improvements in efficiency.

6.3 Heterogeneity Analysis
This section further examines the heterogeneous effects of the pilot climate policies across different 

regions. In our analysis, we focus on three key attributes at the county and district levels: carbon 
emissions, carbon emissions intensity, and regional GDP. To ensure that our classification criteria are 
not influenced by the pilot policies themselves, we divided the samples based on their values from a pre-
policy phase, specifically the year 2007. For each attribute, we categorized the samples into two groups: 
one with values above the median and one with values below the median for total carbon emissions, 
carbon emissions intensity, or regional GDP. We then conducted a regression analysis using the non-
parametric event study method to estimate the heterogeneous effects of the pilot climate policies, with 
the results presented in Table 5.

As a mandate-based climate policy, the effectiveness of the Low-Carbon Pilot Provinces/Cities is 
primarily driven by incentives for government officials, rather than being directly linked to the initial carbon 
emissions levels of the pilot regions. Indirect evidence supporting this conclusion is provided by the results 
in the first four columns of Panel A in Table 5. Regardless of whether the samples are categorized by the 
initial amount or intensity of carbon emissions, the Low-Carbon Pilot Provinces/Cities consistently show 
significant reductions in carbon emissions across all subsample regressions. Since these provinces and 
cities achieve overall reductions by scaling back output, it is likely that the initial economic conditions 
of counties and districts have played a role in influencing the emissions reduction outcomes. As shown 
in columns (5) and (6) of Panel A, the emissions reduction effect is significantly stronger in subsamples 
with regional GDP below the median, compared to those with GDP above the median. This may be 
because the opportunity cost of reducing carbon emissions is relatively lower in economically less 
developed regions, where the pilot areas are more incentivized to cut emissions by reducing output.

Panel B of Table 5 presents the emissions reduction effects of the Carbon Trading Pilot Programs 
across various subsamples. As shown in the table, the Carbon Trading Pilot Programs have led to an 
increase in carbon emissions, primarily driven by regions with lower initial carbon emissions intensity. 
This outcome aligns with the underlying logic of the TPS mechanism for carbon markets, which suggests 
that the expansion of such programs encourages clean enterprises to boost production, thereby reducing 
emissions intensity while increasing economic output. 

In regions where initial carbon emissions intensity is below the median, businesses tend to have cleaner 
production processes. With the implementation of the provincial carbon market, these regions have greater 
opportunities to expand their market share, creating stronger incentives to ramp up production. Columns (3) 
and (4) of Table 5 provide empirical support for this explanation: while the Carbon Trading Pilot Programs 
have only slightly increased carbon emissions in areas with high emissions intensity (above the median), 
this increase is statistically insignificant. In contrast, for regions with low emissions intensity (below the 
median), the programs have resulted in a significant rise in carbon emissions.
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Table 5: Heterogeneity Test of the Core Attributes of Counties and Districts

ln (1+carbon emissions)

Carbon emissions Carbon emissions intensity Regional GDP

(1) Above 
median

(2) Below 
median

(1) Above 
median

(2) Below 
median

(1) Above 
median

(2) Below 
median

Panel A: Low-Carbon Pilot Provinces/Cities

Current-year effect of policy implementation
-0.008** -0.006 -0.008* -0.008*** -0.009** -0.003
(0.004) (0.004) (0.005) (0.003) (0.004) (0.004)

One-year ex-post effect
-0.022*** -0.015** -0.035*** -0.016*** -0.015** -0.021**

(0.008) (0.007) (0.010) (0.005) (0.007) (0.009)

Two-year ex-post effect
-0.017* -0.024*** -0.035*** -0.018** -0.012 -0.025**
(0.009) (0.009) (0.011) (0.007) (0.008) (0.010)

Three-year ex-post effect
-0.039*** -0.048*** -0.075*** -0.033*** -0.027** -0.060***

(0.015) (0.013) (0.018) (0.010) (0.013) (0.016)

Ex-ante trend
0.003 0.003 -0.001 0.005* 0.006* -0.002

(0.003) (0.003) (0.004) (0.003) (0.003) (0.003)
Fixed effect of district/county Controlled Controlled Controlled Controlled Controlled Controlled

Fixed effect of year Controlled Controlled Controlled Controlled Controlled Controlled

Control variables Controlled Controlled Controlled Controlled Controlled Controlled

Observations 3860 3870 3860 3870 3860 3870

Panel B: Carbon Trading Pilot Programs

Current-year effect of policy implementation
-0.002 0.004 0.005 0.008* 0.003 0.007*
(0.005) (0.004) (0.006) (0.005) (0.005) (0.004)

One-year ex-post effect
0.004 0.003 0.010 0.015** 0.007 0.003

(0.008) (0.006) (0.009) (0.007) (0.007) (0.007)

Two-year ex-post effect
0.003 0.006 0.012 0.017** 0.009 0.007

(0.010) (0.007) (0.011) (0.009) (0.009) (0.008)

Three-year ex-post effect
-0.012 0.001 0.001 0.018 0.005 0.005
(0.015) (0.013) (0.017) (0.015) (0.014) (0.014)

Panel B: Carbon Trading Pilot Programs

Ex-ante trend
-0.025*** -0.003 -0.017** -0.012* -0.003 -0.003

(0.003) (0.006) (0.007) (0.006) (0.011) (0.006)
Fixed effect of district/county Controlled Controlled Controlled Controlled Controlled Controlled

Fixed effect of year Controlled Controlled Controlled Controlled Controlled Controlled

Control variables Controlled Controlled Controlled Controlled Controlled Controlled

Observations 2020 2020 2020 2020 2020 2020

Notes: When we conducted subsample regression according to the amount of carbon emissions in 2007, our control variables did not include the 
interaction term between the carbon emissions level of 2007 and the dummy variable of year, and the rest are consistent with the baseline regression. 
Other regressed control variables are fully consistent with the baseline regression.

To further explore the practical applicability of policy instruments, we examined the heterogeneous 
effects of climate policies on resource-dependent cities and old industrial regions. Our analysis reveals 
that the policy impact on resource-dependent cities is consistent with the baseline results, indicating that 
reliance on natural resources does not significantly hinder the implementation of climate policies. In 
contrast, for old industrial regions, the Low-Carbon Pilot Provinces/Cities did not lead to a reduction in 
total carbon emissions. This can be attributed to the fact that, in these areas, carbon emissions intensity 
increased slightly while production output decreased. 

However, the Carbon Emissions Pilot Programs under the market mechanism category produced 
an unexpected outcome: despite an increase in production output, these programs helped significantly 
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reduce carbon emissions intensity, leading to an overall decline in total emissions. This finding suggests 
the importance of tailoring economic policies to local conditions. In regions facing more complex 
challenges, government mandates alone may not suffice. Instead, policy innovation is crucial to fully 
harness the potential for transition and maximize the willingness of local regions to embrace change.

6.4 Cost-Benefit Analysis
We will also conduct a cost-benefit analysis of the baseline results to assess the effectiveness of 

China’s carbon emissions reduction policy. Specifically, we will track changes in GDP and total carbon 
emissions three years after the policy’s implementation to evaluate both the efficiency and long-term 
impact of the policy beyond its immediate effectiveness.

According to data from the United States Interagency Working Group on Social Cost of Greenhouse 
Gases, the average social cost of each additional ton of CO2 emissions was 51 US dollars in 2020. 
Building on the work of Dong et al. (2023) and Chen et al. (2010), we employ the Social Cost of Carbon 
(SCC) as a widely used method in climate change economics to quantify both the benefits of carbon 
emissions reductions and the costs associated with carbon emissions.

Our study revealed that, within three years of implementing the Low-Carbon Pilot Provinces/Cities 
program, carbon emissions decreased at an annual average rate of 2.67%, while regional GDP declined 
by an annual average of 3.87%. In contrast, three years after the introduction of the Carbon Trading Pilot 
Programs, carbon emissions increased by an annual average of 0.93%, while regional GDP grew by an 
annual average of 3.13%.

Using China’s 2013 figures for CO2 emissions (9.4 billion tons) and GDP (56.88 trillion yuan) at the 
exchange rate of 1:7 (USD to RMB), the annual net benefit of the Low-Carbon Provinces/Cities program 
is estimated at -2,111.7 billion yuan. This is calculated as follows: 94.00 × 2.67% × 51 × 7 - 56.88 × 
10,000 × 3.87%.

For the Carbon Trading Pilot Programs, the annual net benefit is 1,749.1 billion yuan, calculated as: 
56.88 × 10,000 × 3.13% - 94.00 × 0.93% × 51 × 7.

From a cost-benefit perspective, the Carbon Trading Pilot Programs demonstrate greater 
effectiveness than the Low-Carbon Pilot Provinces/Cities. As China is placed with high hopes in the 
global efforts to address climate change,  its climate policies and carbon reduction initiatives exert strong 
political influence in the international community. However, the SSC (Standardized Sectoral Crediting) 
approach tends to underestimate the benefits of China’s carbon emissions reductions and the associated 
costs, which represents a limitation in its cost-benefit analysis of emissions reduction efforts.

In the context of this paper, market-based policies appear to be more efficient from a cost-benefit 
standpoint compared to mandate-based policies. However, this does not imply that mandate-based 
policies should be discarded in favor of market-based approaches alone. Rather, a nuanced, case-by-case 
evaluation should be adopted, considering the unique circumstances and goals of each specific context.

7. Concluding Remarks and Policy Recommendations
In this paper, we evaluate the effects of China’s pilot climate policies, examining the differing 

emissions reduction outcomes and mechanisms between the Low-Carbon Pilot Provinces/Cities and 
the Carbon Trading Pilot Programs, while also explaining the reasons behind these discrepancies. Our 
findings contribute to a deeper understanding of China’s climate policy landscape and offer valuable 
insights for future climate policymaking.

First, we highlight that the mandate-based policies, particularly those implemented in the Low-
Carbon Pilot Provinces/Cities, may lead to short-term reductions in carbon emissions. However, these 
mechanisms are not sustainable in the long run and may impose significant economic costs. To improve 
policy effectiveness, we recommend that the central government adopt a more balanced approach, 
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leveraging administrative instruments strategically while setting clear, measurable targets for both total 
emissions and emissions intensity, rather than focusing solely on overall emissions reduction goals.

Second, the effectiveness of the Carbon Trading Pilot Programs in reducing emissions is closely tied 
to the design of market-based mechanisms. While these programs have succeeded in lowering carbon 
emissions intensity through tradable carbon quotas, they have not led to a reduction in total carbon 
emissions within the pilot regions. Therefore, a key next step in advancing the carbon market is to revise 
the carbon quota allocation rules and transition from the current Tradable Performance Standards (TPS) 
system to a more robust cap-and-trade system.

Third, although both the Low-Carbon Pilot Provinces/Cities and the Carbon Trading Pilot Programs 
contribute to carbon emissions reductions in China, their effects and mechanisms differ. Under China’s 
dual targets of controlling the total amount and intensity of carbon emissions, future policies should be 
further optimized and adjusted. It is recommended to integrate market-based approaches with mandate-
based measures through top-down design and supporting infrastructure development. By reasonably 
supplementing administrative measures on the basis of a market mechanism as the mainstay, the 
policies will join to ensure a more comprehensive reduction in total carbon emissions on top of ensuring 
emissions intensity reduction.

It should be noted that this paper examines a select number of cases from the Low-Carbon Pilot 
Provinces/Cities and the Carbon Trading Pilot Programs, and the effects of the same policy can vary 
depending on different contexts. Therefore, we advocate for a “case-by-case” approach when analyzing 
the impacts of climate policies, as the conclusions drawn here may not be directly applicable to other 
mandate-based measures or market-based mechanisms.

Furthermore, several key issues regarding the effectiveness of China’s climate policies merit further 
discussion. First, a more in-depth analysis at the sectoral level is needed to develop more targeted and 
effective climate policies. This includes addressing questions such as how the national carbon market 
can be implemented across various sectors and how carbon quota transactions should be coordinated 
between them. Second, leveraging high-quality enterprise data can provide insights into how climate 
policies affect business operations. Such analysis would help policymakers identify potential barriers 
to policy implementation, facilitating more informed decision-making and enabling targeted regulatory 
oversight.    
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